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Abstract— Fast motion planning is of great significance, espe-
cially when a timely mission is desired. However, the complexity
of motion planning can grow drastically with the increase of
environment details and mission complexity. This challenge
can be further exacerbated if the tasks are coupled with the
desired locations in the environment. To address these issues,
this work aims at fast motion planning problems with temporal
logical specifications. In particular, we develop a hierarchical
decoupling framework that consists of three layers: the high-
level task planner, the decoupling layer, and the low-level motion
planner. The decoupling layer is designed to bridge the high and
low layers by providing necessary information exchange. Such a
framework enables the decoupling of the task planner and path
planner, so that they can run independently, which significantly
reduces the search space and enables fast planing in continuous
or high-dimension discrete workspaces. In addition, the implicit
constraint during task-level planning is taken into account, so
that the low-level path planning is guaranteed to satisfy the
mission requirements. Numerical simulations demonstrate at
least one order of magnitude speed up in terms of computational
time over existing methods.

I. INTRODUCTION

The effectiveness (i.e., the satisfaction of complex mission
requirements) and efficiency (i.e., fast and timely planning)
of motion planning algorithms are critical for mobile robots
to perform various applications. To enable these applications,
prior works mainly rely on the abstracted environment and
robot dynamics. However, the algorithm complexity can
grow drastically with the increase of the environment dimen-
sion and mission complexity. This challenge can be further
exacerbated if the tasks are coupled with the locations in
the environment. For instance, consider a search and rescue
mission as shown in Fig. 1(a), which requires the robot to
equip with search devices by first visiting the tool store
and then search for survivors in the damaged areas 1 and
2. Such a mission can be represented by an LTL formula
Φ = ¬(ap2 ∨ ap3)U(ap1 ∧ ¬ap2 ∧ ¬ap3), where ap1, ap2,
ap3 represent the actions of visiting the tool store to load
search devices, searching over the damaged areas 1 and 2,
respectively. Note that Φ requires the robot not to visit the
damaged areas before visiting the tool store.

A comment approach to solving the above motion plan-
ning problem is to build a product automaton based on the
automaton generated by Φ and the abstracted environment
and robot dynamics [1], [2]. A satisfying motion plan can
then be found by searching over the product automaton [3],
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[4] as in Fig. 1(b) or by sampling based methods [5], [6]
as in Fig. 1(c). However, with the increase of environment
dimension and LTL task complexity, the product automaton
can grow drastically, leading to high computational cost. To
mitigate this issue, an alternative is to leverage hierarchical
approaches [7], in which the task and motion are planned
separately, so that complex LTL tasks and high dimensional
environments can be efficiently handled. However, a potential
issue in most existing hierarchical approaches [8]–[11] is that
the task-level planner might overlook the constraints that are
implicitly coupled with the motions. For instance, to perform
Φ, the task-level planner decides that the tool store needs
to be visited, regardless of the detailed path planning, as
shown in Fig. 1(d). Motion planners then deal with the low-
level path planning towards the tool store in the environment
by using off-the-shelf tools, e.g., sampling-based approaches,
potential field based approaches, etc, as shown in Fig. 1(e).
Apparently, it violates the LTL Φ, as the constraint of not
visiting ap2 and ap3 before ap1 is ignored when the task-
level planner informs the goals to the motion-level planner.

Motivated by the discussion above, this work aims at
fast motion planning problems with temporal logical spec-
ifications. We are interested in combining the goods of
the aforementioned two approaches, i.e., the guarantee of
mission satisfaction in automaton-based approaches and the
efficiency in handling complex tasks and high dimensional
environments in hierarchical approaches. Specifically, we
present a hierarchical decoupling framework that consists of
three layers: the high-level task planner, the decoupling layer,
and the low-level motion planner. The decoupling layer is
designed to bridge the high and low layers by providing
necessary information exchange. Taking advantage of the
hierarchical structure, the task planner and path planner
are decoupled and run independently, which significantly
reduces the search space and enables fast planing in con-
tinuous or high dimensional workspace. Rather than relying
on the product automaton, our method directly operates
on the nondeterministic Büchi automaton (NBA), and can
infer the temporal order of sub-tasks from the automaton,
which enables parallel execution of sub-tasks. Compared
with most hierarchical approaches, our framework ensures
mission completion by taking into account the implicit
constraint during task-level planning, so that low-level path
planning is guaranteed to satisfy the mission requirements.
Numerical simulations demonstrate at least one order of
magnitude speed up in terms of computational time over
existing methods such as the abstraction-free algorithms.
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Fig. 1. (a) The environment with base station, tool store, damaged houses (i.e, area 1 and 2), and unaccessible areas (black blocks). The robot starts from
the base and is tasked with the mission Φ. (b) The planned path using the product automaton based approach when the environment is grid. (c) When
considering a continuous environment, the product automaton based approach is integrated with sampling methods to plan the path of the robot. (d) The
generated Büchi automaton when using hierarchical approaches. The task-level planner indicates the robot should move from base to the tool store. (e)
The realized low-level path using sampling methods.

II. RELATED WORKS

Due to the rich expressivity, linear temporal logic (LTL)
has been increasingly used to describe complex robotic
tasks [1]–[3], [12]–[16]. In these works, the motion planning
depends on graph search techniques over the product automa-
ton. Since the product automaton can grow exponentially
large with the increase of the LTL task and the abstracted
environment and transition systems, the planning can be
time consuming and even intractable. To reduce the com-
putational complexity, sampling-based planning algorithms
were developed to trade strong completeness guarantees for
efficient and scalable path planning. In [17] and [18], rapidly-
exploring random trees (RRT) and rapidly-exploring random
graph (RRG) were exploited, respectively, for the motion
planning with temporal goals. To avoid the construction of
the product automaton, efficient sampling-based algorithms
were developed in [5] for discrete transitions systems and
global temporal logic tasks. Common in the aforementioned
approaches is that a discrete abstraction of the environment
and the transition system is required, which is computation-
ally expensive to construct. The work of [6] presents an
abstraction-free method that incrementally builds trees for
efficient motion planning. Other related works include [19]
and [20]. However, the aforementioned methods still need
to reduce the sampling step size and sample many points in
uninteresting areas.

Hierarchical task and motion planning has also been
investigated in the literature. In [8], the hierarchy is exploited
for the manipulation planning and the atomic propositions
are defined in the object space. In [17], a geometry-based
multi-layered synergistic approach was developed for motion
planning problems. In [9], an extensible planner-independent
interface layer was developed to facilitate the combination of
high-level task planning and low-level motion planning. In
[10], the task and path are planned independently for multiple
robots to operate reactively in an unknown environment.
In [11], long-term temporal logic goals with short-term
reactive requirements were considered. In these works the
tasks are coupled with the underlying environment; however,
the low-level path planning in [9]–[11], [17] can overlook
such constraints, resulting in that the realized path might
violate the specified missions. As an exception, the modified

automaton is adopted in [21] to avoid the violation of the
task-level constraints. In [22], the task is defined in the object
space and the map, which can still potentially violate the
mission requirements. Therefore, without taking into account
the coupled constraint of task and locations, the mission
completion cannot be fully guaranteed.

III. PRELIMINARIES

Linear temporal logic is employed in this work to spec-
ify the task specifications. The syntax of an LTL formula
Φ is defined over a set of atomic propositions AP as
Φ := true|ap|¬| ∧ |X|U , where true is the Boolean value,
ap ∈ AP is an atomic proposition, ¬ (negation) and ∧
(conjunction) are standard Boolean operators, X (next) and
U (until) are temporal operators. Let Θ = 2AP denote the
alphabet, where 2AP represents the power set of AP . The
semantics of an LTL formula are defined over an infinite
sequence π = π0π1 . . . with πi ∈ 2AP for all i ≥ 0. Denote
by π |= Φ if the word π satisfies Φ. Detailed descriptions
of the syntax and semantics of LTL can be found in [23].

An LTL formula can be translated to a nondetermin-
istic Büchi automaton (NBA) using existing tools, such
as LTL2STAR [24]. The NBA is defined as B =
{S, s0,Θ,∆, SF }, where S is a finite set of states, s0 ∈ S is
the initial state , ∆ : S×S → 2Θ is the set of alphabets that
enables the state transition (s, s′) , s, s′ ∈ S, and SF ⊆ S
is the set of accepting states. We denote by s

π−→ s′ if
π ∈ ∆(s, s′). Given an input sequence π = π0π1 . . ., the
generated trajectory from s0 over B is s = s0s1 . . . with
si

πi+1−−−→ si+1 for all i ≥ 0. If π can generate at least one
run s that intersects the accepting states SF infinitely many
times, π is called an accepting run of B. In general, an
accepting run can be written in the prefix–suffix structure,
where the prefix part starting from an initial state and ending
at an accepting state is traversed only once and the suffix part,
a cyclic path of accepting states, is traversed infinitely often.
Throughout this work, let BΦ denote the NBA generated by
the LTL formula Φ.

IV. PROBLEM FORMULATION

A. Environment

Consider a continuous and bounded workspace M contain-
ing N disconnected labeled areas D1, D2..., DN . The rest
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Fig. 2. (a) The workspace of rescue robot. The Store, Base, Tool, House 1
and 2 are labeled areas (i.e., D1 . . . D5 in M ), the thick black lines indicate
obstacles, and the rest white areas are the free-motion area (i.e., D0). It is
assumed that Mountain and Grass are not accessible to the robot. (b) The
abstract map T corresponding to the workspace M , where qi corresponds
to Di in M . To reduce the planning complexity, only labeled areas are
considered in the abstract map. The mountain and grass will be taken care
in the low-level motion planning.

area in M , denoted by D0, is referred to the free-motion
region that robot can move freely. Let p = (x, y) ∈ R2

be a position in M and LA : M → AP be a function
that maps p to an atomic proposition in AP . For instance,
LA(p) = apj , ∀p ∈ Di, indicates that apj ∈ AP can be
executed in Di ∈ M . To facilitate fast planning in M , we
construct an abstract map T .

Definition 1. The abstract map is defined as T =
{Q, q0,Σ, AP, L, LM}, where Q is a finite set of abstract
map states, q0 ∈ Q is the initial state, Σ : Q × Q → R≥0

maps the state transition to a non-negative cost, L : Q → AP
is a labeling function that indicates the atomic proposition
associated with the state in Q, and LM : Q → M is a
labeling function that maps q ∈ Q to a position p ∈ M .

By Def. 1, an abstract map T can be constructed as
a directed graph containing nodes representing the labeled
areas and the cost Σ representing the edge weight. In this
work, the cost of transition (qi, qj) is defined as the inter-
distance from region LM(qi) to LM(qj), i.e., Σ (qi, qj) =
∥LM(qi)− LM(qj)∥.

Example 1. Consider a search and rescue mission as shown
in Fig. 2. Let AP = {ap1, ap2, ap3, ap4, ap5} be a set of
atomic tasks, where ap1, ap2, and ap3 represent the mission
of visiting Store (e.g., get supplies), Base (e.g., task assign-
ment), and Tool (e.g., equip with search device), respectively.
And ap4 and ap5 represent the mission of searching for
survivors in House 1 and 2, respectively. Since Mountain and
Grass are not involved in the task, they are not considered
when constructing the abstract map T , but they will be
considered as obstacles in the low-level planning. Therefore,
the search and rescue mission of the robot can be described
as an LTL formula Φ = ((¬(ap2))Uap1)∧(Fap2)∧(¬(ap4∨
ap5)U(ap3 ∧ ¬ap4 ∧ ¬ap5)) ∧ GFap4 ∧ GFap5, which
requires the robot to visit Store, Base, and Tool sequentially
and then keep searching for survivors in House 1 and 2.
During the mission operation, the robot is required to avoid
Mountain, Grass and other obstacles.

B. Planning Model

Given the workspace M and the Büchi automaton BΦ,
the robot task plan is defined as a tuple Π = (s, ε,π),
where s = s0s1 . . . is the trajectory of automaton states,
ε = ε0ε1ε2 . . . is the sequence of positions in M with ε0
indicating the empty position, π = π0π1π2 . . . is sequence
of atomic propositions with π0 indicating true. Specifically,
for i ≥ 0, si+1 is the automaton state after πi+1 is applied
to si and εi ∈ M is the position in the workspace where
πi is executed. By defining Πi = (si, εi, πi), the task plan
can be rewritten as Π = Π0Π1Π2, . . ., which consists of a
series of planning tuples that satisfy πi+1 ∈ ∆(si, si+1) and
πi = LA(εi) for i ≥ 0. If Π satisfies the LTL formula Φ
in the workspace M , it is denoted as Π |= (Φ,M). Given
the task plan Π, Let P = p0p1p2 . . . be the generated path
of the robot in M , where p0 is the robot initial position.
Apparently, P has to be consistent with ε and realizes the
transitions from εi to εi+1.

The satisfying trajectory of an LTL generally has the
structure of plan prefix and plan suffix [23]. However, when
the plan prefix and plan suffix are individually designed and
optimized, it is possible that the end of the optimal plan
prefix is not the same as the start of the plan suffix, so that
the plan prefix and plan suffix cannot be smoothly connected.
Hence, in this work we introduce a finite trajectory Πtra,
namely plan transition, that starts from the end of plan prefix
and ends at the start of the plan suffix.

Definition 2. The planning Π is in the form of Π =
ΠpreΠtraΠsufΠsuf , . . ., where Πpre and Πsuf are finite
prefix and finite cyclic suffix, respectively, and Πtra is the
finite transition that connects Πpre and Πsuf .

Since [Πpre,Πtra,Πsuf ] |= (Φ,M) also indicates that
[Πpre,Πtra,Πsuf ,Πsuf , . . .] |= (Φ,M), we only need to de-
termine Πpre, Πtra, Πsuf in Π, and the path planning Ppre,
Ptra, and Psuf of the robot can be determined accordingly.

As discussed in Sec. I, when using hierarchical ap-
proaches, the high-level planner needs to determine not
only "where to go", but also the implicit motion constraints
(e.g., "where not to go") during each stage of the task
planning. Hence, we define the barriers BAR to indicate
such constraints to the robot.

Definition 3. The barriers in Π are defined as: BAR =
bar0bar1, . . . , where bari ∈ 2AP , i = 0, 1, . . . , indicates the
banned actions (as well as the associated areas) during the
transition from Πi to Πi+1. .

Based on the defined [Πpre,Πtra,Πsuf ] and BAR, the
robot motion planning can be stated as follows.

Problem 1. Given an LTL task Φ and a continuous and
bounded workspace M , the goal is to obtain a fast motion
planning for a mobile robot to satisfy Φ.

V. PLANNING ALGORITHM

This section presents a hierarchical decoupling framework
to address Problem 1. As shown in Fig. 3, the general idea
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Fig. 3. The hierarchical decoupling framework. It constructs by high layer,
low layer, and decoupling layer. The high layer is for the mission planning.
The low layer is for the path planning. The decoupling layer is to abstract
real environment and guides the plan in the real environment.

is to divide the planning problem into a task planner (i.e.,
the high layer) and a path planner (i.e., the low level). The
task planner determines the targets that the robot needs to
sequentially arrive at (i.e., where to go) and the barriers that
the robots should avoid during motion (i.e., where not to
go), while the path planner realizes the navigation to the
targets in the real environment. Unlike prior works, the task
planner and path planner are decoupled in this work, so that
they can run independently for fast and effective planning.
To enable such a decoupling, the decoupling layer is de-
signed, which bridges the high and low layers by providing
necessary information exchange. In particular, by interacting
with the decoupling layer, cost efficient destinations can be
determined in the high layer, which in turn determines the
barriers to guide the path planning in the low layer.

Algorithm 1: Hierarchical decoupling framework
Input: LTL formula Φ, workspace M
Output: The path planning Ppre, Ptra, Psuf

1 Generate the Büchi automaton BΦ by Φ;
2 Construct the abstract map T from M ;
3 Search for the task plan Πpre,Πtra,Πsub and barriers

BAR using the high level planning (Alg. 2);
4 Initialize the path plan Ppre = [p0], Ptra = [], Psuf = [];
5 for Πi ∈ [Πpre,Πtra,Πsuf ] do
6 Obtain the trajectory Pi from Πi to Πi+1 according to

M and BAR using the low level planning (Alg. 4);
7 Add Pi to Ppre, Ptra, Psuf ;
8 end
9 Return Ppre, Ptra, Psuf

An overview of the developed hierarchical decoupling
approach is shown in Alg. 1. Given the LTL task Φ and
the workspace M , the Büchi automaton BΦ and the abstract
map T are first constructed. For formula Φ, the related
atomic propositions in AP and their corresponding areas
in M are selected. Considering the related proposition apj
and one area of interest Di, we construct qi that satisfies
LM(qi) ∈ Di and L(qi) = LA(LM(qi)) = apj . Then, we
can construct Σ by the distance of each map state tuple. The
construction of T can be found in Example 1. Then, BΦ and
T are used to obtain the planning Πpre,Πtra,Πsuf and the
barriers BAR. Low-level path planing Ppre, Ptra, and Psuf

are generated accordingly.

A. High-level Planning

The goal of task planning is to divide the mission
into high-level organized sub-tasks (e.g., a set of desti-
nations/action to be visited/performed sequentially) while
abstracting out low-level planning details. Such a decompo-
sition can significantly reduce the computational complexity;
however, necessary constraints can be ignored, especially
when the tasks are implicitly coupled with the environment.
For instance, the task planner may only inform the robot the
next destination while the robot is implicitly constrained to
not bypass certain areas before arriving at the destination.
Such implicit constraints need to be appropriately taken into
account. Hence, the task planner needs to determine not only
the destinations, but also the barriers.

Algorithm 2: High-level planning
Input: the abstract map T and Büchi automaton BΦ

Output: Πpre,Πtra,Πsuf ,BAR
1 for s in SF do
2 Πtest(s) = Sampling(s0, s, T,BΦ);
3 end
4 Select the plan prefix with the least cost from {Πtest(s)}

as Πpre;
5 Set Πpre(end) = (sep, εep, πep);
6 Initialize SFf = ∅;
7 for s in SF do
8 Πtest(s) = Sampling(sep, s, T,BΦ);
9 if Πtest(s) exists then

10 add s to SFf ;
11 end
12 end
13 for s in SFf do
14 Πtest(s) = Sampling(s, s, T,B);
15 end
16 Select the plan suffix with the least cost as Πsuf ;
17 Set Πsuf (end) = (ses, εes, πes);
18 Determine Πtra = Sampling(sep, ses, T,BΦ);
19 Determine BAR = Get_barriers([Πpre,Πtra,Πsuf ]);
20 Return Πpre,Πtra,Πsuf , BAR;

The task planning is outlined in Alg. 2. First, based on
the abstract map T and Büchi automaton BΦ, the plan prefix
with the least cost is obtained (lines 1-4). Since the sampling
method in [5] can obtain a satisfying trajectory from an initial
state to an accepting state in SF , it is employed to sample
the states from T and BΦ for feasible state transitions and
then obtain a set of prefix parts, denoted by {Πtest(s)} that
start from the initial state s0 to all accepting states s ∈ SF .
Let the cost be defined as J(Π) =

∑|Π|
i=0 Σ(||εi+1 − εi||2),

which is consistent with the definition of cost in [5]. Based on
the defined cost, the plan with the least cost is selected from
{Πtest(s)} as the prefix path Πpre. Let Πpre (end) denote the
last state in the prefix part Πpre and denote by Πpre(end) =
(sep, εep, πep) its entries.

After determining Πpre, lines 5-18 presents how a feasible
cyclic suffix part is obtained. Let SFf

denote the set of
starting and end states of cyclic suffix parts that are feasible
for the plan prefix Πpre. To construct SFf

, the sampling
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method is used to explore all reachable states in SF from sep.
If there exists a feasible trajectory from sep to an accepting
state s ∈ SF , then s is one of the feasible starting states of
the suffix plan and will be added to the set SFf

(lines 5-12).
According to SFf

, we can continue to explore all feasible
cyclic suffix parts. Let ses ∈ SF be the starting and end
state of plan suffix and all suffix plans that end at ses can be
enumerated using the sampling method. We then select one
with the least cost as the cyclic suffix plan, denoted by Πsuf .
By setting the starting point as sep and the ending point as
ses, we can use the sampling method to obtain the shortest
transition plan Πtra to connect Πpre and Πsuf (line 13-18).
The idea behind this design is to optimize Πpre and Πsuf

individually without requiring that the end state of Πpre is
the same as the starting state of Πsuf , which gives more
freedom to tune the system performance.

Algorithm 3: Get_barriers
Input: Π,B
Output: BAR

1 Initialize BAR = ∅;
2 for (si, εi, πi) in Π do
3 if πi = π0 then
4 add bar0 = ∅ to BAR and continue;
5 end
6 Set bari = ∅;
7 for ap in AP/πi do
8 if ap ∧ πi is not in ∆(si−1, si) then
9 add ap to bari

10 end
11 end
12 add bari to BAR
13 end
14 Return BAR;

Last, Get_barriers function is designed to obtain
BAR = bar1bar2 . . ., where bari indicates the constraints
(e.g., banned actions in this work) that should be taken into
account during the transition from Πi−1 to Πi, i > 0. As
shown in Alg. 3, for each Πi = (si, εi, πi) ∈ Π, if πi∧ap is
not in ∆(si−1, si) for any ap ∈ AP , it indicates that ap is
not executable when agent executes πi. That is, the labeled
area corresponding to the action ap should not be accessible
to the robot. Therefore, ap is added to bari, which will then
be used to update BAR.

For instance, since ap4 or ap5 are not allowed dur-
ing the transitions from ap0 → ap1 → ap2 → ap3,
∆(s0, s1),∆(s1, s2),∆(s2, s3) will not have any word that
contains ap4 or ap5. Therefore, we can obtain BAR =
bar0 . . . bar5 with bar0 = ∅, bar1 = bar2 = bar3 =
{ap4, ap5}, and bar4 = bar5 = ∅.

B. Low-level planning

After determining the task-level destinations and the asso-
ciated constraints, the next step is to realize the navigation
towards the destinations. Inspired by [25], RRT and receding
horizon control (RHC) are integrated in this work to deal
with the motion planning. Let Pi denote the path segment
that connects εi and εi+1, i.e., Pi = εip1 . . . pnεi+1 where

pj ∈ M , j = 1, . . . n. Alg. 4 outlines how Pi is obtained.
Let ds denote the sampling step size (i.e., the maximum
distance between pj and pj+1 in Pi) and rs denote the radius
of sampling area. We first sample a set of random points
PTtemp from the sampling area centered at εi with radius
rs. We then select the point ptarget from PTtemp that is
closest to εi+1 and does not belong to BARi (Lines 3-4).
RRT is then employed to determine a path PH from the
current point pcurrent to the target point ptarget (lines 5-6).
Following the idea of RHC, the first point in PH is used to
update Pi (lines 7-8). Repeat the process above until εi+1 is
reached (lines 9-11).

Algorithm 4: Low-level planning
Input: εi, εi+1, BAR, M
Output: path segment Pi

1 Initialize Pi = εi;
2 while 1 do
3 Sample a set of points PTtemp;
4 Find ptarget ∈ PTtemp such that ∥ptarget − εi+1∥ is

minimized and ptarget /∈ BARi;
5 Set pcurrent as the end point of Pi;
6 Find a path

PH = RRT (pcurrent, ptarget, BARi, ds);
7 Select p = PH(1);
8 Add p to the end of Pi;
9 if |p− εi+1| < ds then

10 break out
11 end
12 end
13 Return Pi;

C. Complexity analysis

Different from conventional sampling methods [6], our
approach is a layered sampling in the sense that we only
sample the automaton states and the abstract map in the high-
level task planner while, in the low-level motion planner,
only points in the workspace M are sampled to realize
point-to-point navigation, which significantly improve the
sampling efficiency. Let X denote the set of nodes in
point to point navigation. The size of T is |Q| and the
size of BΦ is |S|. The length of planning scheme satisfies
|[Πpre,Πtra,Πsub]| < 3 × |S|. For the method in [6],
the space complexity can be expressed as 3 × |S| × |X|
and the time complexity is |X|2 × (3 × |S|)2. For the
sampling method with hierarchical decoupling framework,
the space complexity is 3 × |S| × |Q| + |X| and the time
complexity is |X|2 + |Q|2 × (3 × |S|)2. Since |Q| is much
smaller than |X|, the space complexity and time complexity
of layered sampling are much smaller than conventional
sampling methods. Besides, the layered map sampling has
much lower dependence on map resolution and thus it is
applicable to a more refined map.

VI. NUMERICAL SIMULATIONS

A. Algorithm Complexity

In this section, our approach is compared with the tradi-
tional map-based sampling algorithm and the layered sam-
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pling algorithm by searching over the the same map to show
its advantages in the time and space complexity. Specifically,
we consider the task Φ in Example 1.

The map-based sampling algorithm from [11] and the
automaton and map based sampling (referred to as double
sampling) from [6] are compared with the layered map search
and layered double sampling adapted from our hierarchical
decoupling framework. The step size in these sampling
algorithms is set as 1 and the number of search points is
approximately 100. The results are shown as Table I. which
clearly show that the time and space complexity of the
layered sampling algorithm are greatly reduced.

TABLE I
SOLUTION TIME FOR PATH PLANNING UNDER TASK Φ

Method Time(/s) Complexity
Map sampling 5.38 360000

Double sampling 0.395 1800
Layered map sampling 0.0182 900+100

Layered double sampling 0.0107 90+100

B. Sensitivity to Map Resolution

With the decrease of the sampling step size or the increase
of the map size, the map resolution and the search space will
increase, which affect the solution complexity. In this section,
more comparisons are carried out to show that our approach
is not only fast but also insensitive to the map resolution.
We continue with the task and map in Example 1 and
compare the map-based sampling [11] with our hierarchical
decoupling approach to show how the planning speed varies
with different sampling step. The results are listed in Table II,
which record the solution time and the time ratio. The time
ratio is the ratio between the solution time under different
steps and the solution time when step = 1. Apparently,
our approach is not sensitive to the map resolution, as its
calculation time increases slowly with the increase of map
resolution. Hence, our approach can be used for complex task
planning in a high-resolution map. In contrast, traditional
methods show strong sensitivity to the map resolution.

TABLE II
SOLUTION TIME WITHOUT HIERARCHICAL DECOUPLING FRAMEWORK

Method Step size ds Time(/s) Time ratio
1 5.38 1.00

Vasile et al. [11] 0.3 48.5 9.01
0.1 545 101
1 0.0182 1.00

0.3 0.0227 1.24
Our 0.1 0.0316 1.73

0.03 0.0496 2.73
0.01 0.125 6.87

C. Security

This section shows the security guarantee of the algorithm
compared with ordinary layered architecture. Fig. 4 (a) shows
the planned path using the the original layered framework,
while Fig. 4 (b) shows the planned path using our approach.

Fig. 4. The map contains five areas, which correspond to five atomic
propositions ap1, ap2, ap3, ap4, ap5 respectively. The starting point is in
area 1. In (a), the original layered framework is used and the planned path
from ap2 to ap3 is through ap4. In (b), the layered framework in this paper
is used and the planned path from ap2 to ap3 avoids ap4.

It can be found that our layered framework adequately
reflects the intent of the mission and the original layered
framework can not transfer the information “where not to
go” to the low-level planner. Therefore, our framework has
a better performance on mission based on LTL formula.

VII. EXPERIMENT

Experiments were performed on a mobile robot, turtlebot3
burger, to verify the developed method. The workspace is
similar as the Fig. 2(a) and the formula Φ is the same as
Example 1. Given a Büchi automaton, the robot can obtain
the plan within 0.06s. The agent will visit the blue, pink,
orange, red, and yellow areas in order. And it will avoid
entering the red area until reaching the orange area. Finally,
the agent will cycle through the yellow and red regions
to complete ap4 and ap5. The details of experiment can
be found in https://www.youtube.com/watch?v=
9jzamf1TlyE.

Fig. 5. The map contains five areas, which correspond to five atomic
propositions ap1, ap2, ap3, ap4, ap5 respectively. In (a), the agent is going
to the orange area for ap3 from the pink area with ap2 while avoiding the
red area with ap4 and the yellow area with ap5. In (b), the agent continually
visits the yellow area with ap5 and the red area with ap4.

VIII. CONCLUSIONS

In this work, a hierarchical decoupling framework is
developed. It allows the the task planner and path planner
to run independently, which significantly reduces the search
space and enables fast motion planing. Since the current
work focuses on motion planning of a single robot, additional
research will consider extension to task and motion planning
for homogeneous/heterogeneous multi-robot systems.
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